Automatic Identification of Sarcasm Target: An Introductory Approach
نویسندگان
چکیده
Past work in computational sarcasm deals primarily with sarcasm detection. In this paper, we introduce a novel, related problem: sarcasm target identification (i.e., extracting the target of ridicule in a sarcastic sentence). We present an introductory approach for sarcasm target identification. Our approach employs two types of extractors: one based on rules, and another consisting of a statistical classifier. To compare our approach, we use two baselines: a naı̈ve baseline and another baseline based on work in sentiment target identification. We perform our experiments on book snippets and tweets, and show that our hybrid approach performs better than the two baselines and also, in comparison with using the two extractors individually. Our introductory approach establishes the viability of sarcasm target identification, and will serve as a baseline for future work. This paper was uploaded to arXiv on 20 October, 2016; but was submitted to EACL 2017 at an earlier date. The paper was not on arXiv at the time
منابع مشابه
"sure, I Did the Right Thing": a System for Sarcasm Detection in Speech
While a fair amount of work has been done on automatically detecting emotion in human speech, there has been little research on sarcasm detection. Although sarcastic speech acts are inherently subjective, humans have relatively clear intuitions as to what constitutes sarcastic speech. In this paper, we present a system for automatic sarcasm detection. Using a new acted speech corpus that is ann...
متن کامل"Having 2 hours to write a paper is fun!": Detecting Sarcasm in Numerical Portions of Text
Sarcasm occurring due to the presence of numerical portions in text has been quoted as an error made by automatic sarcasm detection approaches in the past. We present a first study in detecting sarcasm in numbers, as in the case of the sentence ‘Love waking up at 4 am’. We analyze the challenges of the problem, and present Rulebased, Machine Learning and Deep Learning approaches to detect sarca...
متن کاملICWSM - A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Online Product Reviews
Sarcasm is a sophisticated form of speech act widely used in online communities. Automatic recognition of sarcasm is, however, a novel task. Sarcasm recognition could contribute to the performance of review summarization and ranking systems. This paper presents SASI, a novel Semi-supervised Algorithm for Sarcasm Identification that recognizes sarcastic sentences in product reviews. SASI has two...
متن کاملYour Sentiment Precedes You: Using an author's historical tweets to predict sarcasm
Sarcasm understanding may require information beyond the text itself, as in the case of ‘I absolutely love this restaurant!’ which may be sarcastic, depending on the contextual situation. We present the first quantitative evidence to show that historical tweets by an author can provide additional context for sarcasm detection. Our sarcasm detection approach uses two components: a contrast-based...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.07091 شماره
صفحات -
تاریخ انتشار 2016